

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: +254 (0)799529958, +254 (0)799529959, +254 (0)712524293

Website: www.must.ac.ke Email: info@must.ac.ke

UNIVERSITY EXAMINATIONS 2019/2020

THIRD YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR
OF SCIENCE IN MATHEMATICS AND COMPUTER

SMA 3350: GROUP THEORY

DATE: JANUARY 2021

TIME: 2 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE (30 MARKS)

a) Express the following permutations as a product of disjoint cycles;

i) $(1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9)$ (2 marks)

ii) $(1\ a\ b\ c\ d\ e)$ (3 marks)

b) Let G be the group of all real 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $ad - bc \neq 0$ under matrix multiplication, and let $K = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. Show that K is a subgroup of G . (4 marks)

c) i) If H is a subgroup of G and N is a normal subgroup of G , show that $H \cap N$ is a normal subgroup of H . (5 marks)

iii) Show that every subgroup of an abelian group is normal. (3 marks)

d) In each of the following, verify if the mappings defined are homomorphisms, and in those cases in which they are homomorphisms determine the kernel;

i) $\emptyset : G \rightarrow G$ where G is the group of non-zero real numbers under multiplication and \emptyset is defined by $\emptyset(x) = x^2, \forall x \in G$. (4 marks)

ii) $\emptyset : G \rightarrow G$ where G is as in (i) and $\emptyset(x) = 2^x, \forall x \in G$. (2 marks)

iii) $\emptyset : G \rightarrow G$ where G is the group of real numbers under addition and $\emptyset(x) = x + 1, \forall x \in G$. (2 marks)

e) Write down the multiplication table for S_3 . Determine the centre of S_3 . (5 marks)

QUESTION TWO (20 MARKS)

a) State and prove the Lagrange's theorem. (8 marks)

b) Let $H = \{I, (12)\}$ be a subgroup of S_3 . Find all the left cosets of H in S_3 . Determine the index of H in S_3 . (6 marks)

c) Prove that the order of every element of a finite group is a divisor of the order of a group. (6 marks)

QUESTION THREE (20 MARKS)

a) Prove that H is a normal subgroup of G iff $\forall x \in G, h \in H, xhx^{-1} \in H$. (6 marks)

b) If H and N are subgroups of a group G and given that $H \leq K$, show that $i(G/H) = i(G/K) \times i(K/H)$ (6 marks)

c) Given that G is a group;

i) Define the centre, Z , of G . (2 marks)

ii) Show that the centre, Z , of a group G , is always a normal subgroup of the group. (6 marks)

QUESTION FOUR (20 MARKS)

a) Determine which of the following permutations are even;

i) $(123)(12)$ (3 marks)

ii) $(12345)(123)(45)$ (3 marks)

iii) $(12)(13)(14)(25)$ (3 marks)

b) Prove that the 4 permutations I , (ab) , (cd) and $(ab)^\circ(cd)$ on 4 symbols a, b, c and d form a finite abelian group with respect to the composite operation. (11 marks)

QUESTION FIVE (20 MARKS)

a) Define the following terms:

i) Homomorphism. (2 marks)

ii) Isomorphism (2 marks)

b) Show that the additive group $(\mathbb{Z}, +)$ of integers is isomorphic to the additive group $(G = \{ma : a \in \mathbb{Z}\}, +)$. (6 marks)

c) Let G and G' be two isomorphic groups whose composition is defined multiplicatively and let f be the corresponding isomorphism. Prove that:

i) f maps the identity element $e \in G$ onto $e' \in G'$, i.e $f(e) = e'$. (5 marks)

ii) f maps the inverse of element $a \in G$ onto the inverse of $a \in G'$ i.e $f(a^{-1}) = (f(a))^{-1}, \forall a \in G$. (5 marks)