

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: +254 (0)799529958, +254 (0)799529959, +254 (0)712524293

Website: www.must.ac.ke Email: info@must.ac.ke

UNIVERSITY EXAMINATIONS 2019/2020

THIRD YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR
OF COMPUTER SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 3353: RING THEORY

DATE: JANUARY 2021

TIME: 3 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions.

QUESTION ONE (30 MARKS)

a) Define the term unit group of a ring $(R, +, \cdot)$. (2 marks)

b) Determine the unit group of the ring $(\mathbb{Z}, +, \cdot)$ of integers. (3 marks)

c) i) Define the left ideal of a ring . (2 marks)

ii) Prove that in a ring M_2 of all 2×2 matrices over integers, the set $U = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} : a, b \in \mathbb{Z} \right\}$ is a left ideal but not a right ideal. (6 marks)

d) i) Define homomorphism of rings. (3 marks)

ii) Prove that the function $f : (\mathbb{Z}_4, +_4, \cdot_4) \rightarrow (\mathbb{Z}_2, +_2, \cdot_2)$ defined by $f(0) = f(2) = 0$ and $f(1) = f(3) = 1$ is a homomorphism. (5 marks)

e) Show that the polynomial $f(x) = x^3 + x + 1$ is irreducible over the field F of integers modulo 5 i.e $(F, +_5, \cdot_5)$. (5 marks)

f) Find all the zero divisors of \mathbb{Z}_{20} . (4 marks)

QUESTION TWO: (20 MARKS)

a) i) Define a subring of a ring R . (3 marks)
ii) Let $S = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$. Show that S is a subring of the ring R of real numbers. (6 marks)

b) i) Let $(R, +, \cdot)$ be a ring and $(I, +, \cdot)$ be an ideal of the ring $(R, +, \cdot)$. Prove that $(I, +, \cdot)$ is a subring of $(R, +, \cdot)$. (6 marks)
ii) Using the ring $(\mathbb{Q}, +, \cdot)$, of rational numbers and the subring $(\mathbb{Z}, +, \cdot)$ of $(\mathbb{Q}, +, \cdot)$, prove that a subring is not necessarily an ideal of the ring. (5 marks)

QUESTION THREE: (20 MARKS)

a) Find the greatest common divisor of the following polynomials over F , the field of rational numbers: $x^2 + x - 2$ and $x^5 - x^4 - 10x^3 + 10x^2 + 9x - 9$. (7 marks)

b) Prove that $x^3 - 9$ is irreducible over the field of integers modulo 31. (10 marks)

c) Prove that the polynomial $f(x) = 1 + x + x^3 + x^4$ is not irreducible over any field F . (3 marks)

QUESTION FOUR: (20 MARKS)

a) Explain the following terms as used in ring theory;
i) Binary operation. (2 marks)
ii) Ring. (2 marks)
iii) Integral domain. (2 mark)
iv) Quotient ring. (2 mark)
v) Zero divisor of a ring. (2 marks)

b) Prove that the intersection of two subrings of a ring R is a subring of R . (5 marks)

c) Let $(\mathbb{Z}, +, \cdot)$ be a ring of integers and $(5\mathbb{Z}, +, \cdot)$ be an ideal generated by 5. Prove that the system $(\mathbb{Z}/5\mathbb{Z}, +, \cdot)$ is a quotient ring. (5 marks)

QUESTION FIVE (20 MARKS)

a) Prove that the set \mathbb{Z} of integers is a ring with respect to addition and multiplication. (10 marks)

b) Prove that the $(\{0, 1, 2, 3, 4, 5\}, +_6, \times_6)$ is a ring with zero divisors. (5 marks)

c) If R is a commutative ring and $a \in R$, show that $aR = \{ar : r \in R\}$ is a two sided ideal of R . (5 marks)